Generalized Robinson-Schensted Algorithms

نویسندگان

  • Richard Melrose
  • Peter Engel Trapa
  • Bertram Kostant
  • George Lusztig
  • David A. Vogan
  • Eric Sommers
  • Peter Dodds
  • Allen Knutson
  • Diko Mihov
  • Monica Nevins
چکیده

In Part I of this thesis, we locate a (conjecturally complete) set of unitary representations in the admissible dual of U(p, q). In a little more detail, Barbasch and Vogan have used the theory of Kazhdan-Lusztig cells to parametrize the irreducible Harish-Chandra modules with integral infinitesimal character in terms of their annihilators and associated varieties. Vogan has conjectured that the weakly fair cohomologically induced modules A,(A) exhaust the unitary dual of U(p, q) for the kinds of infinitesimal character that they can have. Here we compute the annihilators and associated varieties of these modules, thus locating them in the admissible dual. In particular, this determines all coincidences among these modules and gives their Langlands parameters. We conclude Part I with some evidence for the conjecture. In Part II, we interpret some of the combinatorics which arise in the Barbasch-Vogan parametrization in terms of the geometry of the generalized Steinberg variety. This leads to a study of geometric cells, which are exactly analogous to Kazhdan-Lusztig cells, except that one begins with a topological action of the complex Weyl group instead of the coherent continuation action. We compute the structure of geometric cells for type A real groups; more precisely, we compute Springer's generalized Robinson-Schensted algorithm for these groups, and compare the computation to the Barbasch-Vogan parametrization. Thesis Committee: Bertram Kostant George Lusztig David A. Vogan, Jr. (Thesis Advisor)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pieri’s Formula for Generalized Schur Polynomials

Young’s lattice, the lattice of all Young diagrams, has the Robinson-Schensted-Knuth correspondence, the correspondence between certain matrices and pairs of semi-standard Young tableaux with the same shape. Fomin introduced generalized Schur operators to generalize the Robinson-Schensted-Knuth correspondence. In this sense, generalized Schur operators are generalizations of semi-standard Young...

متن کامل

A Proof of Pieri’s Formula Using the Generalized Schensted Insertion Algorithm for Rc-graphs

We provide a generalization of the Schensted insertion algorithm for rc-graphs of Bergeron and Billey. The new algorithm is used to give a new proof of Pieri’s formula.

متن کامل

Tableaux and Matrix Correspondences

The Robinson-Schensted correspondence, a bijection between nonnegative matrices and pair of tableaux, is investigated. The representation, in the tableau, of the dihedral symmetries of the matrix are derived in a simple manner using a shapepreserving anti-isomorphism of the platic monoid. The Robinson-Schensted correspondence is shown to be equivalent to the Hillman-Grass1 bijection between rev...

متن کامل

Properties of the nonsymmetric Robinson-Schensted-Knuth algorithm

We introduce a generalization of the Robinson-Schensted-Knuth algorithm to composition tableaux involving an arbitrary permutation. If the permutation is the identity our construction reduces to Mason’s original composition Robinson-Schensted-Knuth algorithm. In particular we develop an analogue of Schensted insertion in our more general setting, and use this to obtain new decompositions of the...

متن کامل

Skew Domino Schensted Algorithm

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

Rc - Graphs and a Generalized Littlewood - Richardson Rule

Using a generalization of the Schensted insertion algorithm to rcgraphs, we provide a Littlewood-Richardson rule for multiplying certain Schubert polynomials by Schur polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009